23考研一元线性回归笔记
1. Random Variables
Yi=β0+β1Xi+εi
df=n−2
1-1. εi
Distribution
εi∼N(0,σ2) i.i.d
Properties
σεi∼StdN
σ2∑εi2∼χ2(n−2)
Point Estimation
sε2:=s2=MSEOBS=n−2SSEOBS=n−2∑ei2
1-2. SSE/σ2
Definition
SSE:=∑εi2
Distribution
σ2SSE=σ2∑εi2∼χ2(n−2)
1-3. MSE/σ2
Definition
MSE:=n−2SSE
Distribution
σ2MSE=σ2SSE/n−2∼n−2χ2(n−2)
1-4. Yi
Definition
Yi:=β0+β1Xi+εi,β0,β1,Xi∈R
Y^i∈R
Definition
Y^i=β0+β1Xi
Properties
Yi=Y^i+εi
Yˉ=n1∑Y^i=n1∑(β0+β1Xi)=β0+β1Xˉ
Distribution
Yi∼Y^i+N(0,σ2)=N(Y^i,σ2) i.i.d
1-5. b1
Definition
b1:=ℓxxℓxy=∑(Xi−Xˉ)2∑(Xi−Xˉ)(Yi−Yˉ)=∑∑(Xi−Xˉ)2Xi−XˉYi
ki∈R
Definition
ki:=ℓxxX~i=∑(Xi−Xˉ)2Xi−Xˉ
Properties
b1=∑kiYi
∑ki=∑(Xi−Xˉ)2∑(Xi−Xˉ)=0
∑kiXi=∑(Xi−Xˉ)2∑(Xi−Xˉ)Xi=∑(Xi−Xˉ)2∑(Xi−Xˉ)2+∑(Xi−Xˉ)2Xˉ∑(Xi−Xˉ)=1
∑ki2=(∑(Xi−Xˉ)2)2∑(Xi−Xˉ)2=∑(Xi−Xˉ)21=ℓxx1
Distribution
b1=∑kiYi∼∑kiN(Y^i,σ2)=N(∑kiY^i,∑ki2σ2)
∑kiY^i=∑ki(β0+β1Xi)=β0∑ki+β1∑kiXi=β1
∑ki2σ2=σ2∑ki2=ℓxxσ2
b1∼N(β1,ℓxxσ2)
Point Estimation
b^1=β1
sb12=ℓxxMSE=∑(Xi−Xˉ)2MSE
(Z−μ)/s∼t(df)
Distribution
σZ−μ∼StdN,σs=σ2MSE∼dfχ2(df)
sZ−μ=σZ−μ/σs∼χ2(df)/dfStdN=t(df)
1-6. b0
Definition
b0:=Yˉ−b1Xˉ
Distribution
Yˉ∼N(β0+β1Xˉ,σ2/n)
Definition
Yˉ:=n1∑Yi∼n1∑N(Y^i,σ2)=N(n∑Y^i,nσ2)=N(β0+β1Xˉ,nσ2)
Properties
Cov(Yˉ,b1)=Cov(n1∑Yi,∑kiYi)=n∑kiσ2=0
b0=Yˉ−b1Xˉ∼N(β0+β1Xˉ,nσ2)−XˉN(β1,ℓxxσ2)=N(β0,σ2(n1+ℓxxXˉ2))
1-7. Yh
Definition
Yh:=b0+b1Xh
Distribution
Yh=Yˉ+b1X~h∼N(β0+β1Xˉ,nσ2)+X~hN(β1,ℓxxσ2)=N(β0+β1Xh,σ2(n1+ℓxxX~h2))
Confidence Interval
yh∈[Y^h±t1−2α(n−2)sh]
Working-Hotelling Confidence Bend
yh∈[Y^h±Wsh]
W2=2F1−α(2,n−2)
Average response of ∞ predictions
1-8. Ypred
Definition
Ypred=Yh+εpred,εpred∼N(0,σ2)
Distribution
Ypred∼N(β0+β1Xh,σ2(1+n1+ℓxxX~h2))
Response of single prediction
1-9. Ypredmean
Definition
Ypredmean=Yh+m1j=1∑mεpredj,εpredj∼N(0,σ2) i.i.d
Distribution
Ypredmean∼N(β0+β1Xh,σ2(m1+n1+ℓxxX~h2))
Average response of m predictions
Relations Between Yh, Ypred, Ypredmean
Yh=Ypredmean(m=∞)
Ypred=Ypredmean(m=1)
1-10. ei
Definition
ei=Yi−b0−b1Xi
Distribution
ei∼N(0,σ2(1−n1−ℓxxX~i2))
Cov(ei,ej)=σ2(−n1−ℓxxX~iX~j)
1-11. Summary
Variable | Distribution | Mean | Variance | Covariance |
---|
εi | N | 0 | σ2 | 0 |
SSR/σ2 | χ2(n−2) | | | |
MSR/σ2 | n−2χ2(n−2) | | | |
Yi | N | Y^i | σ2 | 0 |
b1 | N | β1 | ℓxxσ2 | |
b0 | N | β0 | σ2(n1+ℓxxXˉ2) | |
Ypredmean | N | β0+β1Xh | σ2(m1+n1+ℓxxX~h2) | |
ei | N | 0 | σ2(1−n1−ℓxxX~i2) | σ2(−n1−ℓxxX~iX~j) |
1-12. ANOVA Table
ANOVA | SS | df | MS | E(MS) |
---|
Regression | SSR=∑(Y^i−Yˉ)2 | 1 | MSR=SSR | σ2+β12ℓxx2 |
Error | SSE=∑(Yi−Y^i)2 | n−2 | MSE=n−2SSE | σ2 |
Total | SSTO=∑(Yi−Yˉ)2 | n−1 | | |
- Coefficient of Determination R2:=SSR/SSTO
- Coefficient of Correlation r:=sgnb1⋅R2=ℓxy/ℓxxℓyy
2. Estimations & Tests
2-1. β1
Interval Estimation
t2α(n−2)≤sb1b1−β1≤t1−2α(n−2)
β1∈[b1±t1−2α(n−2)sb1]
Tests
H0:β1=0vsH1:β1=0
t:=sb1b1,W={∣t∣>t1−2α(n−2)}
F:=MSEMSR∼F(1,n−2),W={∣F∣>F1−α(1,n−2)}
R:Reduced Model,F:Full Model
F:=dfR−dfFSSER−SSEF/dfFSSEF,W={∣F∣>F1−α(dfR−dfF,dfF)}
R:Yi=β0+εi,F:Yi=β1Xi+β0+εi
SSER=SST,SSEF=SSE
dfR=n−1,dfF=n−2
F=MSR/MSE
2-2. β0
Interval Estimation
t2α(n−2)≤sb0b0−β0≤t1−2α(n−2)
β0∈[b0±t1−2α(n−2)sb0]
3. Variance Normality & Constancy
3-1. Studentized and Semi-studentized Residuals
sei=σeiσ=MSE,sei(stu)=seiei,sei(semistu)=MSEei
3-2. Normal Q-Q Plot of Residuals
E(εi∣ei is the k-th smallest among e)≈un+1/4k−3/8MSE
- Plot y=E(εi∣k), x=ei
- Normal residuals if scatters near y=x
3-3. Brown-Forsythe Test for Variance Constancy
H0:ε=constvsH1:ε=const
XOBS=X(1)∪X(2),X(1)={x∈XOBS∣x<xˉ}
di(1)=∣ei(1)−emid(1)∣,s2=n−2∑d~i(1)+∑d~i(2)
tBF=sn11+n21dˉ1−dˉ2,W={∣tBF∣>t1−2α(n−2)}
3-4. Breusch-Pagan Test for Variance Constancy of Large Sample
lnσi2=γ0+γ1Xi
H0:ε=const⟺γ1=0vsH1:ε=const
χBP2=2SSRγ/(nSSEβ)2 ∼˙ χ2(1)W={∣χBP2∣>χ1−α2(1)}
4. Samples of Repeat X
4-1. Dividing of XOBS
Divide XOBS into groups by same X
XOBS=⋃X(j),j=1,⋯,c,SSE=SSPE+SSLF
SSPE=j∑i∑(Yi(j)−Yˉ(j))2,SSLF=j∑i∑(Yˉ(j)−Y^i(j))2
ANOVA | SS | df | MS |
---|
Regression | SSR=∑∑(Y^i(j)−Yˉ)2 | 1 | MSR=SSR |
Error | SSE=∑∑(Yi(j)−Y^i(j))2 | n−2 | MSE=n−2SSE |
Lack of Fit | SSLF=∑∑(Yˉ(j)−Y^i(j))2 | c−2 | MSLF=c−2SSLF |
Pure Error | SSPE=∑∑(Yi(j)−Yˉ(j))2 | n−c | MSPE=n−cSSPE |
Total | SSTO=∑∑(Yi(j)−Yˉ)2 | n−1 | |
E(SSPE)=σ2,E(SSLF)=σ2+c−2∑nj(μj−Y^j)2
4-2. F-Test of Lack-of-fit with repeat X
H0:EY=β0+β1Xv.sH1:EY=β0+β1X
F:Xi(j)=μ(j)+εi(j),R:Yi=β1Xi+β0+εi
SSEF=SSPE,SSER=SSE
dfF=n−c,dfR=n−2
F=MSLF/MSPE
Yλ={Yλ,lnY,λ=0,λ=0
Yiλ=β0+β1Xi+εi
5. Simultaneous PI & CI
CI0=b0±t1−2α(n−2)sb0,CI1=b1±t1−2α(n−2)sb1
Pr(β0∈/CI0)=Pr(β1∈/CI1)=α
Pr(β0∈CI0∧β1∈CI1)=1−2α
5-1. Joint CI of β0,β1
B:=t1−4α(n−2)
BonfCI0=b0±Bsb0,BonfCI1=b1±Bsb1
Pr(β0∈BonfCI0∧β1∈BonfCI1)=1−α
5-2. Simultaneous Yh CI of {Xhi}i=1g
Y^h±UsYh
Bonferroni CI
U=Bα(g)=t1−2gα(n−2)
Working-Hotelling CI
U=Wα=2F1−α(2,n−2)
5-3. Simultaneous Ypred PI of {Xhi}i=1g
Y^pred±UsYpred
Bonferroni PI
U=Bα(g)=t1−2gα(n−2)
Scheffe PI
U=Sα(g)=gF1−α(g,n−2)
6. Regression Assuming β0=0
Yi=β1Xi+εi
6-1. b1
b1=∑Xi2∑XiYi=ℓxxℓxyXˉ=Yˉ=0∼N(β1,ℓxxσ2)Xˉ=0,df=n−1
6-2. ei
ei∼N(0,σ2(1−ℓxxXi2))Xˉ=0,Cov(ei,ej)=σ2(−ℓxxXiXj)Xˉ=0
6-3. Ypred
Ypred∼N(β1Xh,σ2(1+ℓxxXh2))Xˉ=0
6-4. ANOVA Table
ANOVA | SS | df | MS | E(MS) |
---|
Regression | SSRU=∑Y^i2 | 1 | MSRU=SSRU | σ2+β12ℓxx2∣Xˉ=0 |
Error | SSE=∑(Yi−Y^i)2 | n−1 | MSE=n−1SSE | σ2 |
Total | SSTOU=∑Yi2 | n | | |
6-5. Test of β1=0
H0:β1=0vsH1:β1=0
F:=MSEMSRU∼F(1,n−1),W={∣F∣>F1−α(1,n−1)}